

GCSE MARKING SCHEME

MATHEMATICS - LINEAR
NOVEMBER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2013 examination in GCSE Mathematics - Linear. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

PAPER 1 – FOUNDATION TIER

PAPER 1 (Non calculator)	Marks	FINAL MARK SCHEME	
Foundation Tier		Comments	
1. (a) (i) (£) 2,025,310 (ii) twenty three thousand and eight (litres)	B1 B1	B0 for twenty three thousand zero hundreds and eight (litres)	
(b) (i) 38 and 32 (ii) 46 (iii) 42	B1 B1 B1	Accept embedded answers, e.g. $37 + 46 = 83$.	
(c) 119	B1	B0 for -119	
(d) 81	B1	Accept 9^2 OR 9×9	
(e) 1, 2, 4, 7, 14, 28	B2 9	B1 for at least 4 correct factors with at most 1 incorrect number. Ignore repeats.	
2. (a) 7 thousand(s) OR 7000 OR thousand(s)	B1		
(a) 7 thousand(s) OR 7000 OR thousand(s) (b) 53 OR 59 OR 151, 251 etc (c) 14 (d) 3/8 (e) (Megan spends) £7.20 on pens (Number of pens) = 720/60	B1 B1 B2 B1 M1	B1 for 6/16. Mark their final answer for the B2 C.A.O. For 'their £7.20'/60. B0,M0,A0 for £8/60. Unsupported 12 gets Those who use equal additions of 60(p) must either get to £7.20 OR if there are arithmetical error(s)	
		the 3 marks. must show that they have added	
= 12 (pens)	A1	F.T. as far as they can.	
Look for	QWC	QWC2 Presents relevant material in a coherent and logical	
 spelling 	2	manner, using acceptable mathematical form, and with few	
 clarity of text explanations 		if any errors in spelling, punctuation and grammar.	
• the use of notation (watch for the use of '=', £, p)			
QWC2: Candidates will be expected to		QWC1 Presents relevant material in a coherent and logical	
 present work clearly, with words explaining 		manner but with some errors in use of mathematical form, spelling, punctuation or grammar	
process or steps AND		OR	
 make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer 		evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.	
QWC1: Candidates will be expected to			
 present work clearly, with words explaining process or steps 		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or	
OR		grammar	
 make few if any mistakes in mathematical form, spelling, punctuation and grammar and include 			
units in their final answer	10		
3. (a) Cricket (C) 10, Football (F) 6, Hockey (H) 11	B2	May be inferred from their bar chart.	
Tennis (T) 8,		B1 for any two/three correct frequencies	
		If frequencies score 0, then give B1 for all 4 correct tallies.	
Both axes labelled, e.g. frequency along one axis and	B2	B1 if no scale, but allow one square to represent 1	
Tennis (T), Football (F), Cricket (C), Hockey (H)		OR B1 if not labelled as 'frequency' or similar.	
along other axis - anywhere within the base (inc.) of the		If frequency scale starts with 1 at the top of the first square	
corresponding bar.		the starting at 0 will be implied for this axis.	
AND uniform scale for the frequency axis starting at 0 and		Accept 'Number of pupils' but NOT 'pupils'	
labelled 'frequency' OR 'number of pupils'.			
Four bars at correct heights (bars must be of	B2	F.T. their frequencies throughout.	
equal width)		B1 for any 2 or 3 correct bars on F.T.	
		If no frequencies given in their working, penalise -1 for each	
		incorrect frequency on their bars up to -4 (First and third	
		B2s)	
(b) Hockey (H)	B1	Accept 11 and Hockey (H), but B0 for 11 only	
		F.T. their figures.	
(c) 10/35 I.S.W. OR 2/7	B2	B1 for the 10 (in a fraction < 1) OR B1 for a denominator of 35(in a fraction < 1). F.T. 'their 10' but must be 35.	
	9	Penalise -1 for incorrect notation, e.g. '10 out of 35', '10:35'	

PAPER 1 (Non calculator) Foundation Tier	Marks	FINAL MARK SCHEME Comments
4. (a) Speed of stone $= 4 \times 10 + 15$	M1	Correctly substituted shown by correct attempt to evaluate.
= 55 ISW	A1	Correctly substituted shown by correct attempt to evaluate.
(b) time = $(45 - 20)/10$	M1	For correct substitution with subtraction
		For example, $45 - 20/10 = 2$ gets M0,A0
$= 2.5 \text{ OR } 2\frac{1}{2} \text{ ISW}$	A1	Allow embedded references to the correct answer.
	4	2 r5 gets A0
5. (a) Missing side segments = (3 and) 5	S1	
Perimeter = $3+8+3+5+3+3+3+8+3+3+8$	M1	Attempt to add ALL the correct sides of the shape
		Seven 3s, three 8s and a 5 (F.T. the 5 from their diagram
50 ()	A 1	but not 3 or 8). Watch out for implied values, e.g. 11
= 50 (cm)	A1	C.A.O. <u>50 should imply S1,M1,A1</u>
(b) Area = $3 \times 8 \times 2 + 3 \times 3 \times 2$	M1	F.T. their length of square from (a)
		Alternatively could be 2×11×3 OR 11×14 – 11×8
= 66 cm ²	A1 U1	
CIII	6	Independent of all other marks.
6. <u>any fraction equiv. to 2/5</u> (0).4 (40%)	B1, B1	First and second values
any fraction equiv. to 3/10 (0.3) 30(%)	B1, B1	First and third values
7. (a) $3+3+1-2$	4 M1	
$\begin{array}{c} 7. & \text{(a)} \ \ 5+3+1-2 \\ & = 5 \end{array}$	A1	
(b) 1 win, 1 draw and 2 losses OR WDLL	B1	In any order
3+1-2-2 (=0)	B1	Allow 'running totals', e.g. win 3, draw 4, 2 losses =0.
(c) (0 wins) 2 draws and 3 losses OR DDLLL	B1	In any order
$1 + 1 - 2 - 2 - 2 \ (= -4)$	B1 6	Answers must only use 5 games.
8. Man 5 to 7 ft OR 1.5 to 2.2 metres (both inclusive)	B1	
(Man 3cm Bus = $7\frac{1}{2}$ cm)		Unsupported answers marked as
Scale factor = 2.5 (OR the use of 2.5 in their working)	B1	fallows
Estimate height of bus = estimate \times factor	M1	feet 10 SC1 12.5 M1, A1 (inc) 17.5 21 SC1 SC1
F.T. their estimates \times their SF (2 – 3 inc.)	IVII	. , , , , , , , , , , , , , , , , , , ,
= correct answer for their figures	A1	metres 3 <u>5.5</u> <u>6.5</u>
SC1 for answers which:		F.T. their man's height estimate AND scale factors 2–3 inc.
(a) only give man's height as3cm and bus's as 7.5cm ± 2mm		
OR (b) a proper attempt at 'dividing' the bus's height into 'man height' parts		Correct units must be seen at least once to get the final A1
man neight parts	A	
9. (a) ∠ABD = 37 (°) OR ∠DBC = 37 (°)	4 B1	Look at diagram also
$\angle A = 106(^{\circ})$ $\angle ABD = 37(^{\circ})$ $\angle ABD = 37(^{\circ})$ $\triangle ABD = 37(^{\circ})$	B1	2001 at singlain also
$\angle C = x = 106 (^{\circ})$ $\angle C = x = 106 (^{\circ})$	B1	C.A.O.
9. (b) 360 – 132 – 126 – 61	M1	Angle sum of quadrilateral. Note that $180 - (360 - 126 -$
= 41 (°)	A1	132 - 61) is equivalent, that is $126 + 132 + 61 - 180$
``		For finding 4th angle. Also look in their diagram.
		41 on its own gets this A1, even as $y = 41$
y = 139 (°)	B1	F.T. 'their 41'
	6	

PAPER 1 (Non calculator)	Marks	FINAL MARK SCHEME
Foundation Tier		Comments
10. (a) (4) 16 20 (3) 12 15 (2) 8 10 (1) 4 5	B2	B1 for at least 4 correct entries
(b) (i) 5/12	В2	F.T. their table B1 for a numerator of 5 in a fraction less than 1. B1 for a denominator of 12 in a fraction less than 1. Penalise incorrect notation -1 e.g. 5 out of 12, 5:12 Do not penalise if correct notation also given.
(ii) $\frac{5}{12}$ of 60	M1	F.T. their (b)(i) if a fraction less than 1 (but not ½)
= 25	A1	This 25 may appear in later working 25 out of 60 gets M1,A1 but 25/60 gets M1,A0.
(iii) $60 \times 80p - 25 \times 150 \text{ OR } \text{£48} - \text{£37.5}(0)$	M1	F.T. full method of $60 \times 80p$ – 'their 25' × 150p OR Profit = 35 x $80p$ – 25 x $70p$ = £28 – £17.5(0)
= £10.50 OR 1050p	A1 8	= £10.50 OR 1050p.
11. (a) -a + 2b	B2	B1 for the –a OR + 2b in an expression with a and b OR B1 for both correct, but not in an expression.
(b) (i) (x=) 50	B1	Accept embedded answers such as $50/5 = 10$
(ii) $3x = 12$ x = 4	B1 B1 5	F.T. $ax = b \ (a \ne 1)$ Accept embedded answers such as $3 \times 4 + 7 = 19$
12. (a) (i) 2 (is a prime number) (and even)	B1	Needs the statement. Ignore true/false.
(ii) For example, halving 18 ends up as 9	B2	SC1 for explanations like '18 divides into 2 to make 9 rather than '18 divided by 2 makes 9' For a correct counter example. <u>B0 for false only.</u>
(b) One of 2 consecutive numbers is even so the product will be even.	B2 5	B2 for 'even × odd = even' AND 'odd × even = even' B1 for 'even × odd = even'. OR B1 for 'one of 2 consecutive numbers is even' B0 for example(s) only.
13. (a)	M1	For a method that produces 2 prime factors from the set {2, 3, 5, 5} before their second error. If their 2 nd prime and 2 nd error occurs at the same 'level' then allow M1.
$2, 3, 5, 5$ $2 \times 3 \times 5^2$	A1 B1	C.A.O. for the <u>four</u> correct factors. (Ignore 1s). F.T. their answer if at least one index form used with at least a square. Ignore prime number requirement for this B mark. Use of brackets (2)(3)(5 ²) OR dot 2.3.5 ² gets the B1. The inclusion of any 1s as factors, for example, 2×3×1×5 ² in their index form gets B0. Note that 2×3 ¹ ×5 ² gets B1.
(b) 2 × 3 OR 6	B1 4	F.T. their (a) if the M1 awarded.

PAPER 1 (Non calculator)	Marks	FINAL MARK SCHEME
Foundation Tier	D2	Comments P1 if translated OP for at least 2 hars correct OP if height
(b)(i) 75 (ii) Tom AND a reason, e.g. 'more bars on left for Billy', 'more bars right for Tom', 'Tom collected more longer logs' 'Tom has higher number 70 – 75cm logs', 'Tom's mode higher than Billy's'	B1 E1	B1 if translated OR for at least 3 bars correct OR if height correct but slight gaps between the bars If frequency polygon drawn, or indication of points at correct heights only, B0 in all cases. Accept reference to heights. Accept comparison of modal groups Do not accept Tom with statement 'longer logs'. 'Tom has 10 logs with length 70-75cm', 'Tom has highest frequency (38, Billy has 30)'
H2	4	
15.(a) 230(g) and 460(g) and 690(g)	B1	CAO
2 and 60(ml)	B1	CAO
320(ml)	B1	CAO
172.5(g)	B1	CAO $(1oz = 28.75g)$
		If recipe for 4, treat as MR-1
		(115, 230, 345: 1, 30: 160: 86.25)
(b) Use of 1 litre = 1000 ml or $\frac{1}{2}$ litre = 500ml	B1	May be implied in calculation, e.g. in working towards
		(2cups) 480 (ml)
8 people needs 320ml so need 320 ÷ 8 ml per person	M1	FT 'their 320'. throughout OR 4 people 2/3 ×240 (ml) so 2/3 ×240 ÷4
		OR 500÷320 considered or shown as repeated addition or multiplication trials towards 500
40 ml per person or 12.5 people	M1	Allow for an answer of 13 from appropriate working
		OR if trials or repeated addition has been used, must work to consider 'their 320' can be broken down into a smaller quantity per person
12 portions	A1	(Note: FT from cream 160ml gives 25 people)
Н3	8	Unsupported answer of 12 (people) is awarded all 4 marks
16. (a) 55	B2	B1 for evidence of 180 – (75 + 50) or equivalent, e.g. 360 –(105 + 125+75) incorrectly calculated, accept without brackets as intention, e.g.180 - 75 + 50, OR for sight of 55(°) or 125(°) from appropriate working or on the diagram
(b) $2z + z + 2z + z = 24$ (or $6z = 24$ or $3z = 12$ or $2z=24/3$)	M1	Must be evidence of a correct equation $z = 4$ Do not penalise change of letter from $z = 4$
6z = 24 (or $z = 24/6$ or $z = 12/3$)	A1	An answer only of $(z =) 4$ without an introductory equation
z=4	B1	is M0, A0, B1. Accept answer 4 (metres) without equation $SC1$ for $z+z+z+z=24$ or $4z=24$ leading to $z=6$, or $2z+2z+2z+2z=24$ or $8z=24$ leading to $z=3$, or similar $z+2z=24$ leading to $z=8$ or similar
Н8	5	
17.Realising that 1/3 of the winnings is given away AND considers equivalent fractions in/24	S1	Or sight of $1/3 =/24$ or realising $\frac{2}{3}$ is $16/24$ OR accept appropriate working with an amount of money
8 (close friends) H6	B2	B1 for an appropriate calculation that could lead to 8 people or 16 (left) OR sight of 16/24 or 8/24 Examples of calculations: 24-16, or 2×24/3 (=16 left) An unsupported correct answer is awarded all 3 marks.
AAV		

PAPER 1 – HIGHER TIER

PAPER 1	Marks	FINAL MARK SCHEME
Higher Tier $1(a) (-3)^2 - 5$	M1	Comments Evidence of substitution.
$\frac{1(a)}{2} \frac{(-3) - 3}{2}$	MII	Answers of -7, $\frac{1}{2}$, -5.5 or working towards these answers is evidence of substitution (M1)
(b) $(2\times5)^3$ = 2	A1 M1	Or sight of $2\times5\times2\times5\times2\times5$ or $10\times10\times10$ or 10^3
$= 1000$ (c) $5^{1}/_{5}$ (ISW) or 5.2 or 26/5	A1 B2	B1 for $5 + \frac{1}{5}$. SC1 for $-\frac{4}{5}$ from 2-3+ $\frac{1}{5}$
2() C	6 D2	D1:f(1 1 1 0 D f 1 1 2 1 1 4 0 D :f1 : 14
2(a) Correct frequency diagram	B2	B1 if translated OR for at least 3 bars correct OR if height correct but slight gaps between the bars If frequency polygon drawn or indication of points at correct heights, B0 in all cases
(b)(i) 75 (ii) Tom AND a reason, e.g. 'more bars on left for Billy',	B1 E1	Accept reference to heights.
'more bars right for Tom', 'Tom collected more longer logs', 'Tom has higher number 70 – 75cm logs', 'Tom's mode higher than Billy's'	4	Accept comparison of modal groups Do not accept Tom with statement 'longer logs', 'Tom has 10 logs with length 70-75cm', 'Tom has highest frequency (38, Billy has 30)'
3(a) 230(g) and 460(g) and 690(g)	B1	CAO
2 and 60(ml)	B1	CAO
320(ml)	B1	CAO
172.5(g)	B1	CAO If recipe for 4, treat as MR-1 (115, 230, 345: 1, 30: 160: 86.25)
(b) Use of 1 litre = 1000 ml or ½ litre = 500ml	B1	May be implied in calculation, e.g. in working towards (2cups) 480(ml)
8 people needs 320ml so need 320 ÷ 8 ml per person	M1	FT 'their 320' throughout OR 4 people 2/3 ×240 (ml) so 2/3 ×240 ÷4 OR 500÷ 'their 320' considered or shown as repeated addition or multiplication trials towards 500
40 ml per person or 12.5 people	M1	Allow for an answer of 13 from appropriate working OR if trials or repeated addition has been used, must work to consider how 'their 320' can be broken down into a smaller quantity per person
12 portions	A1 8	(Note: FT from cream 160ml gives 25 people) Unsupported answer of 12 (people) is awarded all 4 marks
4(a) Enlargement scale factor 2	B2	B1 for any 3 lines correct, or consistent incorrect scale
Correct position	B1	, ,
(b) Correct reflection in $y = -x$	B2	B1 for a reflection in $y = x$, OR for sight of the line $y = -x$ Answer coordinates at $(2, 6)$, $(4, 6)$, $(4, 2)$
(c) Correct rotation	B2	B1 for a 'near miss' slightly off the grid lines, OR 90° clockwise rotation about (-2, -4)
5() 6.2	7	Answer coordinates at (1, -4), (1, -8), (-1, -8)
$5(a) y^6 + 3y$ as a single expression	B2	B1 for each term. If B2 penalise further working -1 Do not accept y×y ⁵ for y ⁶ . Do not accept 3×y for 3y, Allow y3 for 3y
(b) $2x(2x^2-1)$	B2 4	B1 for correct but only partially factorised OR $2x(2x^2)$ or $2x(1)$
6.Realising that 1/3 of the winnings is given away AND considers equivalent fractions in/24	S1	Or sight of $1/3 =/24$ or realising $\frac{2}{3}$ is $16/24$ OR accept appropriate working with an amount of money
8 (close friends)	B2	B1 for an appropriate calculation that could lead to 8 people or 16 (left) OR sight of 16/24 or 8/24 Examples of calculations: 24-16, or 2×24/3 (=16 left)
	3	An unsupported correct answer is awarded all 3 marks.

PAPER 1 Higher Tier		FINAL MARK SCHEME Comments
7. (Ratio bonus) (1 share) (£)2500÷5	M1	Comments
(2 shares is $500 \times 2 =$) (£)1000 (Percentage option) (6% of £17000 =) $0.06 \times (£)17000$	A1 M1	Alternative method to find 1% (÷100) then 6% (× 6)
= (£)1020 Valid reason based on working, e.g. '6% option because it is more money', or '6% option as it is £20 more'	A1 E1	FT from their two values provided both M marks awarded, must be based on two values to compare
Look for • spelling • clarity of text explanations, • the use of notation (watch for the use of '=', £, p)	QWC 2	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar
QWC2: Candidates will be expected to • present work clearly, maybe with diagrams and words explaining process or steps AND		OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
 make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer 		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
QWC1: Candidates will be expected to • present work clearly, maybe with diagrams and words explaining process or steps OR		
make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	7	
8(a) 55 (b) $2z + z + 2z + z = 24$ (or $6z = 24$ or $3z = 12$ or $2z=24/3$)	B2 M1	B1 for evidence of $180 - (75 + 50)$ or equivalent, e.g. $360 - (105 + 125 + 75)$ incorrectly calculated, accept without brackets as intention, e.g. $180 - 75 + 50$, OR for sight of $55(^{\circ})$ or $125(^{\circ})$ from appropriate working or on the diagram Must be evidence of a correct equation, not $z = 4$ Do not penalise change of letter from z
6z = 24 (or $z = 24/6$ or $z = 12/3$) (z=) 4 (metres)	A1 B1	An answer only $(z =) 4$ without an introductory equation is M0, A0, B1. Accept answer 4 (metres) without equation SCI for $z+z+z+z=24$ or $4z=24$ leading to $z=6$, or
	5	2z+2z+2z+2z=24 or $8z=24$ leading to $z=3$, $z+2z=24$ leading to $z=8$ or similar
9(a) Selecting $8y = -3x + 12$ Either shows $y = -(1.5/4) x + 1.5$ or shows trials, within $8y=-3x+12$ knowing that $(0, 1.5)$ or $(-4, 3)$ and $(4, 0)$ lie on this line	B1 E1	SC1 for selection of $8y = 3x + 12$ with some attempt at a reason (e.g. elimination of other equations) Do not accept 'the one that works' without saying why? Do not accept 'negative gradient', as this is insufficient
or appropriate elimination of all other equations (b) $(2 + -2)/2$ or $(-4 + 6)/2$	M1	OR attempt sketch with reasonable idea of mid point (not when giving intersection as a response)
(0,1)	A1 4	Watch for, and accept the use of (a) graph paper (Watch for (0,2) without working or from incorrect working this is M0, A0)
10(a) 5, 16, 33 (b) -50 (c) n ² - 10	B2 B1 B2	Ignore any further values given B1 for 2 correct terms in the correct position SC1 for 0, 5, 16 or, 5, 16, 33 CAO Mark final answer B1 for $n^2 \pm$, not for n^2 alone, written within an expression
	5	of at least 2 terms B0 for an $^2\pm\dots$ where a $\neq 1$

Higher Tier	PAPER 1	Marks	FINAL MARK SCHEME
(£) 220×1.03 (£) 2			
A can be considered to the content of the distance PQ around the cylinder, as straight line PQ^2 - c2(11)^2 + \(\text{ h}^2 \) PQ - section of the distance PQ around the cylinder, as straight line PQ^2 - c2(11)^2 + \(\text{ h}^2 \) PQ - section in point of intersection PQ - section and as	11(a) (£)220	B1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b) 220×1.03	M1	
	(£)226.6(0)		CAO. ISW
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12() (2) (5)		P1.6 (2)(5) (5) 2(5)
$ \begin{array}{c} \text{(b) } 2(2x+3) + 3(4x+1) = 129 \\ \text{16} (s+9=129 \\ x=120/16 \ (-7.5) \\ \text{A1} \\ \text{16} (s+9=129 \\ x=120/16 \ (-7.5) \\ \text{A2} \\ \text{(c) } 2d+de=15-3e \\ de+3e=15-2d \\ e(d+3)=15-2d \\ e(d+3)=15-2d \\ \text{(d) } 4d+3 \\ \text{(d) } 4d+4 \\ \text{(d) } 4d+2 \\ \text{(d) } 4d+3 \\ \text{(d) } 4d+4 \\ \text{(d) } 4d+2 \\ \text{(d) } 4d+3 \\ ($			
(b) $2(2x+3)+3(4x+1)=129$ $16(x+9=120)$ $x=120\cdot16-(x-5)$ A1	x = -3 and $x = 7$	BI	
$ \begin{array}{c} 16k+9=129 \\ x=120/16 \ (c-7.5) \\ \end{array} \begin{array}{c} A1 \\ x=120/16 \ (c-7.5) \\ \end{array} \begin{array}{c} A1 \\ x=120/16 \ (c-7.5) \\ \end{array} \begin{array}{c} A1 \\ A1 \\ \end{array} \begin{array}{c} A1 \\ A2 \\ A2 \\ \end{array} \begin{array}{c} A1 \\ A2 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A2 \\ A2 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A2 \\ A2 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A1 \\ A2 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A2 \\ A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A2 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A2 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A2 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A2 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A4 \\ \end{array} \begin{array}{c} A3 \\ \end{array} \begin{array}{c} A4 $	(b) $2(2y+3)+3(4y+1)=120$	M2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0) 2(2x + 3) + 3(4x + 1) - 12	IVIZ	
$x = 120/16 \ (=7.5) \\ Al. Accept 240/32. Ignore incorrect cancelling SC1 provided no other marks awarded for \frac{16x + 9}{6} \in [129) (c) 2d + de = 15 - 3e de + 3e = 15 - 2d e(d + 3) = 16 - 2d e(d + 3) = 16$	16x + 9 = 129	A1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
(e) $2d + de = 15 - 3e$ $de + 3e = 15 - 2d$ $ed + 3 = 15 - 2d$ $ed + 3$ 13. Shows understanding of the distance PQ around the cylinder, as straight line PQ ² = circumference ² + h ² 14. 12.5(kg) 15(a) = 16 and -8 (b) At least 4 points plotted accurately All 9 points plotted accurately and intersecting the curve Coordinates of the point of intersection PC and x = 8.8 drawn accurately and intersecting the curve Coordinates of the point of intersection POx=33.939900 (b) Any 3 correct response, e.g. 0 , $\sqrt{4}$, $\sqrt{19}$, $\sqrt{4}$, ,		SC1 provided no other marks awarded for $\underline{16x + 9}$ (= $\underline{129}$)
$\begin{array}{c} \operatorname{de} + 3 = 15 - 2\mathrm{d} \\ \operatorname{e}(\operatorname{d} + 3) = 15 - 2\mathrm{d} \\ \operatorname{e}(\operatorname{d} + 3) = 15 - 2\mathrm{d} \\ \operatorname{d} + 3 \\ \end{array}$ $13. \text{Shows understanding of the distance PQ around the cylinder, as straight line} \\ PQ^2 = \operatorname{circumference}^2 + h^2 \\ PQ^2 = (2\Pi r)^2 + h^2 \\ (PQ =)^{-1} \sqrt{(2\Pi r)^2 + h^2)} \text{ or } \sqrt{(4\Pi^2 r^2 + h^2)} \\ \end{array}$ $\begin{array}{c} \operatorname{BI} \\ \operatorname{BI} \\ \operatorname{BI} \\ \operatorname{BI} \\ \operatorname{BI} \\ \operatorname{Allow split into 2 diagonals} \\ \operatorname{Accept PO}^2 = 2\Pi r^2 + h^2 \text{ as idea for method} \\ \operatorname{No further FT from split diagonals} \\ \operatorname{Accept PO}^2 = 2\Pi r^2 + h^2 \text{ as idea for method} \\ \operatorname{No further FT from split diagonals} \\ \operatorname{ACO} \\ \operatorname{BE}_2 \\ \operatorname{BI} \\ \operatorname{BI} \\ \operatorname{Infinite}_{\operatorname{I}} \operatorname{Allow split into 2 diagonals} \\ \operatorname{Accept PO}^2 = 2\Pi r^2 + h^2 \text{ as idea for method} \\ \operatorname{No further FT from split diagonals} \\ \operatorname{Accept PO}^2 = 2\Pi r^2 + h^2 \text{ as idea for method} \\ \operatorname{No further FT from split diagonals} \\ \operatorname{ACO} \\ \operatorname{BE}_2 \\ \operatorname{BI} \\ \operatorname{Infinite}_{\operatorname{Infinite}} \operatorname{Accept PO}^2 = 2\Pi r^2 + h^2 \text{ as idea for method} \\ \operatorname{No further FT from split diagonals} \\ \operatorname{ACO} \\ \operatorname{AII} \\ \operatorname{PO} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{PO} \\ \operatorname{AII} \\ \operatorname{PO} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{PO} \\ \operatorname{AII} \\ \operatorname{AIII} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{AII} \\ \operatorname{AII} \\ AII$	(c) $2d + de = 15 - 3e$	B1	
$\frac{e = 15 - 2d}{d + 3}$ $\frac{d + 3}{11}$ 13. Shows understanding of the distance PQ around the cylinder, as straight line PQ 3 = circumference 2 + h 2 $PQ^2 = circumference^2 + h^2 PQ^2 = (2\Pi r)^2 + h^2 PQ = \sqrt{(2\Pi r)^2 + h^2} PQ = \sqrt$	de + 3e = 15 - 2d	B1	
d + 3 11 13. Shows understanding of the distance PQ around the cylinder, as straight line $PQ^2 = \operatorname{circumference}^2 + h^2$ 31 E.g. shows a rectangle with PQ as the diagonal Allow split into 2 diagonals straight lines PQ ² = circumference ² + h ² M1 Allow split into 2 diagonals straight lines PQ ² = (2Πγ) ² + h ² Allow application of Pythagoras' Theorem as FT from a split into 2 diagonals PQ ² = (2Πγ) ² + h ² Allow application of Pythagoras' Theorem as FT from a split into 2 diagonals Accept PQ ² = 2Πr ² + h ² as idea for method No further FT from split diagonals Accept PQ ² = 2Tr ² + h ² as idea for method No further FT from split diagonals Accept PQ ² = 2Tr ² + h ² as idea for method No further FT from split diagonals Accept PQ ² = 2Tr ² + h ² as idea for method No further FT from split diagonals FT from an Statistic mid for the curve of points plotted accurately and joined with a curve of points plotted accurately and joined with a curve of points plotted accurately and joined with a curve of points plotted accurately and joined with a curve of positistic plants and plot from the points plotted accurately and joined with a curve of positistic plants and plot from the graph of the scale in points where gradient is zero IT from an Statistic plants and a from the from the from the points plotted accurately and intersecting the curve of positistic plants and plants and plants and plan	e(d+3) = 15 - 2d	B1	
13. Show understanding of the distance PQ around the cylinder, as straight line PQ^2 = circumference\(^1 + \text{h}^2\) 1	e = 15 - 2d	B1	Mark final answer
cylinder, as straight line $PQ^2 = \operatorname{circumference}^2 + h^2$ $PQ^2 = circumference$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S1	
$PQ^2 = (2\Pi r)^2 + h^2 \\ (PQ =) \sqrt{((2\Pi r)^2 + h^2)} \text{ or } \sqrt{(4\Pi^2 r^2 + h^2)}$ $14. 12.5(kg)$ $15(a) - 16 \text{ and } - 8 \\ (b) \text{ At least 4 points plotted accurately}$ $A11 \\ A12 \\ A13 \\ A14 \\ A15 \\ A15 \\ A15 \\ A15 \\ A16 \\ A16 \\ A16 \\ A17 \\ A17 \\ A17 \\ A18 \\ A18 \\ A19 \\ A29 \\ A29 \\ A19 \\ A29 \\ A$	cylinder, as straight line	3.54	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PQ^2 = \text{circumference}^2 + h^2$	MI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			split into 2 diagonals
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$DO^2 = (2\Pi r)^2 + h^2$	Α1	
14. 12.5(kg) 2 2 2 2 2 2 2 2 2			No further FT from spire diagonals
State Sta	(1 Q -) (((2111) + 11) (1 ((4111 + 11)		
15(a) = 16 and -8 (b) At least 4 points plotted accurately All 9 points plotted accurately and joined with a curve (c) (0, 0) (2, -16) or follow through from their graph (d) $y = 8 - 8x$ drawn accurately and intersecting the curve Coordinates of the point of intersection All 9 points of the point of intersection Bl Need both points where gradient is zero FT from consistent misread of the scale if possible Need both points where gradient is zero FT from their curve if possible Neasonable for their graphs, reading accurate to gridlines Accept with missing brackets Accept unsupported answers (2.5, -12.5) to (2.5, -12)	14. 12.5(kg)	B2	B1 for sight of 2.5(kg)
(b) At least 4 points plotted accurately All 9 points plotted accurately and joined with a curve (c) $(0,0)$ (2, -16) or follow through from their graph (d) $y=8-8x$ drawn accurately and intersecting the curve Coordinates of the point of intersection $y=8-8x$ drawn accurately and intersecting the curve $y=8-8x$ drawn accurate to gridlines Accept with missing brackets Accept with missing brackets Accept unsupported answers $y=8-8x$ drawn accurate to gridlines Accept with missing brackets Accept with missing brac			
All 9 points plotted accurately and joined with a curve (c) $(0,0)$ $(2,-16)$ or follow through from their graph (d) $y=8-8x$ drawn accurately and intersecting the curve Coordinates of the point of intersection B1 Need both points where gradient is zero FT from consistent misread of the scale if possible PT from their curve if possible Reasonable for their graphs, reading accurate to gridlines Accept with missing brackets Accept unsupported answers $(2.5, -12.5)$ to $(2.5, -12)$ and $(2.5, -12)$ and $(2.5, -12)$ and $(2.5, -12)$ and $(3.393/990)$ and $(3.393/9$			
to pass through all of the points plotted Need both points where gradient is zero FT from consistent misread of the scale if possible FT from consistent misread of the scale if possible FT from consistent misread of the scale if possible FT from consistent misread of the scale if possible FT from consistent misread of the scale if possible FT from consistent misread of the scale if possible Reasonable for their graphs, reading accurate to gridlines Accept with missing brackets Accept unsupported answers (2.5, -12.5) to (2.5, -12) 16(a) Attempt to find the difference between 100x=34.2727 and $x = 0.342727$ 16(b) Any 3 correct responses, e.g. 0, ½, 1/9, 1, 4, 9, 16, 25, (b) Any 3 correct responses, e.g. 0, ½, 1/9, 1, 4, 9, 16, 25, (c) (i) Correct response, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{2}$, $\sqrt{5}$, $\sqrt{21}$, (ii) Correct response, e.g. $\sqrt{11}$, $\sqrt{11}$			
Second continues of the point of intersection Coordinates of the point of intersection Coordinates of the point of intersection Second coordinates of the point of intersecting the curve FT from consistent misread of the scale if possible FT from their curve F	All 9 points profiled accurately and joined with a curve	AI	
Coordinates of the point of intersection Coordinates of the point of intersection A1 Reasonable for their graphs, reading accurate to gridlines Accept with missing brackets Accept unsupported answers (2.5, -12.5) to (2.5, -12)	(c) (0, 0) (2, -16) or follow through from their graph	B1	
$\begin{array}{c} y=8-8x \ drawn \ accurately \ and \ intersection \\ Coordinates of the point of intersection \\ Coordinates of the point of intersection \\ \hline \\ A1 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ A1 \\ A1 \\ \hline \\ A2 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ A0 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ A0 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ A00 \\ A1 \\ A1 \\ A2 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ A1 \\ A1 \\ A2 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ A1 \\ A2 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -12) \\ \hline \\ A1 \\ A1 \\ A2 \\ Accept \ unsupported \ answers \ (2.5, -12.5) \ to \ (2.5, -1$		2.	FT from consistent misread of the scale if possible
Coordinates of the point of intersection A1 Reasonable for their graphs, reading accurate to gridlines Accept with missing brackets Accept unsupported answers $(2.5, -12.5)$ to $(2.5, -12)$ B1 Or differences with correct values for $10000x$ and $100x$, or $1000x$ and $10x$, or alternative full method, or sight of $33.93/9900$ B2 Accept if consistently written with index $3/2$ Accept if more than 3 responses offered if all are correct B1 for any 2 correct responses with no more than 1 incorrect response B1 If an incorrect response offered with a correct response, B0 Do not accept $\sqrt{11}$ B1 OR M1 $32 + \sqrt{32}\sqrt{2} + \sqrt{32}\sqrt{2} + 2$ any 3 terms correct A1 $32 + 8 + 8 + 2$ CAO A1 50 A1 Strategy, finding area 0.2 × 30 + 0.4 × 10 + 0.8 × 10 + 1.2 × 10 + 1.0 × 10 + 0.1 × 30 43 (people) (b) $6+4+8+12+\frac{1}{2}+\frac{1}{2}\times10$ OR $43-3-\frac{1}{2}\times10$		M1	
6 Accept unsupported answers (2.5, -12.5) to (2.5, -12) 16(a) Attempt to find the difference between 100x=34.2727 and x = 0.342727 3393/9900 (b) Any 3 correct responses, e.g. 0, ¼, 1/9, 1, 4, 9, 16, 25, (c)(i) Correct response, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{5}$, $\sqrt{21}$, (d) $(\sqrt{(2\times16) + \sqrt{2})^2}$ (4 $\sqrt{2} + \sqrt{2}$) 2 (= (5 $\sqrt{2}$) ²) 50 17(a) Strategy, finding area 0.2×30 + 0.4×10 + 0.8×10 + 1.2×10+ 1.0×10+ 0.1×30 43 (people) (b) 6+4+8+ 12 + ½×10 OR 43 - 3 - ½×10		A1	Reasonable for their graphs, reading accurate to gridlines
16(a) Attempt to find the difference between 100x=34.2727 and x = 0.342727 M1 Or differences with correct values for 10000x and 100x, or 10000x and 100x, or alternative full method, or sight of 33.93/9900 Say 39.3/990 Say 39.			
100x=34.2727 and x = 0.342727 3393/9900 (b) Any 3 correct responses, e.g. 0, ¼, 1/9, 1, 4, 9, 16, 25, (c) (i) Correct response, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{1/2}$, $\sqrt{5}$, $\sqrt{21}$, (ii) Correct response, e.g. $\sqrt{1}$, $\sqrt{11}$			
33.93/9900 (b) Any 3 correct responses, e.g. 0, ¼, 1/9, 1, 4, 9, 16, 25, A1 ISW Accept if consistently written with index 3/2 Accept if more than 3 responses offered if all are correct B1 for any 2 correct responses with no more than 1 incorrect response If an incorrect response offered with a correct response, B0 Do not accept $\sqrt{11}$ B1 M1 OR M1 $32 + \sqrt{32}\sqrt{2} + \sqrt{32}\sqrt{2} + 2$ any 3 terms CORRECT (A) $32 + 8 + 8 + 2$ CAO A1 50 17(a) Strategy, finding area $0.2 \times 30 + 0.4 \times 10 + 0.8 \times 10 + 1.2 \times 10 + 1.0 \times 10 + 0.1 \times 30$ A3 (people) (b) $6+4+8+12+\frac{1}{2}\times 10$ OR $43-3-\frac{1}{2}\times 10$ A1 Any single area is sufficient (Note for markers: $6+4+8+12+10+3$) CAO FT 'their 43 '		M1	
3393/9900 (b) Any 3 correct responses, e.g. 0, ½, 1/9, 1, 4, 9, 16, 25, B1	100x=34.2727 and $x = 0.342727$		
(b) Any 3 correct responses, e.g. 0, $\frac{1}{4}$, $\frac{1}{9}$, 1, 4, 9, 16, 25, B2 Accept if consistently written with index $\frac{3}{2}$ Accept if more than 3 responses offered if all are correct B1 for any 2 correct responses with no more than 1 incorrect response [B1] If an incorrect response offered with a correct response, B0 Do not accept $\sqrt{\Pi}$ B1 OR M1 $32 + \sqrt{32}\sqrt{2} + \sqrt{32}\sqrt{2} + 2$ any 3 terms correct [A1] $32 + 8 + 8 + 2$ CAO A1 50 Any single area is sufficient (Note for markers: $6+4+8+12+10+3$) CAO FT 'their 43' B2 Accept if consistently written with index $\frac{3}{2}$ Accept if more than 3 responses offered if all are correct B1 for any 2 correct response with no more than 1 incorrect response Do not accept $\sqrt{\Pi}$ B1 OR M1 $32 + \sqrt{32}\sqrt{2} + \sqrt{32}\sqrt{2} + 2$ any 3 terms correct A1 $32 + 8 + 8 + 2$ CAO A1 50 Any single area is sufficient (Note for markers: $6+4+8+12+10+3$) CAO FT 'their 43' A1 CAO FT 'their 43'	2302/0000	A 1	
25, Accept if more than 3 responses offered if all are correct B1 for any 2 correct responses with no more than 1 incorrect response (c)(i) Correct response, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{5}$, $\sqrt{21}$, B1			
B1 for any 2 correct responses with no more than 1 incorrect response B1 If an incorrect response offered with a correct response, B0 Do not accept $\sqrt{\Pi}$ B1 M1 OR M1 $32 + \sqrt{32}\sqrt{2} + 2$ any 3 terms A1 $32 + 8 + 8 + 2$ CAO A1 50 50 A1 50 50 A1 50 A1 50 A1 50 A1 50 A1 50 A2 50 A2 50 A3 50 A2 50 A1 50 A2 50 A3 50 A1 50 A1 50 A1 50 A1 50 A2 50 A2 50 A3 50 A2 50 A3 50 A1 50 A1 50 A1 50 A1 50 A1 50 A2 50 A2 50 A3 50 A2 50 A3 50 A3 50 A1 50 A2 50 A3 50 A4		ل کا	
Co)(i) Correct response, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4/2}$, $\sqrt{5}$, $\sqrt{21}$, B1 Correct response, e.g. Π , $\sqrt{\Pi}$, $\sqrt{3}\sqrt{2}$, $\sqrt{5}$, $\sqrt{21}$, B1 OR M1 $32 + \sqrt{32}\sqrt{2} + \sqrt{32}\sqrt{2} + 2$ any 3 terms correct A1 $32 + 8 + 8 + 2$ CAO A1 50 17(a) Strategy, finding area 0.2 × 30 + 0.4 × 10 + 0.8 × 10 + 1.2 × 10 + 1.0 × 10 + 0.1 × 30 43 (people) (b) $6+4+8+12+\frac{1}{2}\times10$ OR $43-3-\frac{1}{2}\times10$ A1 CAO FT 'their 43 ' FT 'their 43 '	,		
(c)(i) Correct response, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4/2}$, $\sqrt{5}$, $\sqrt{21}$, (ii) Correct response, e.g. Π , $\sqrt{\Pi}$, $\sqrt{3}\sqrt{2}$, $\sqrt{5}$, (d) $(\sqrt{(2\times16)} + \sqrt{2})^2$ ($(4\sqrt{2} + \sqrt{2})^2$ ($(4\sqrt{2} + \sqrt{2})^2$) ($(4$			
(c) (i) Correct response, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4/2}$, $\sqrt{5}$, $\sqrt{21}$, (ii) Correct response, e.g. Π , $\sqrt{\Pi}$, $\sqrt{3}\sqrt{2}$, $\sqrt{5}$, $\sqrt{21}$, (d) $(\sqrt{(2\times16)} + \sqrt{2})^2$ ($(4\sqrt{2} + \sqrt{2})^2$) $(4\sqrt{2} + \sqrt{2})^2$) $(4\sqrt{2} + \sqrt{2})^2$ ($(4\sqrt{2} + \sqrt{2})^2$) $(4\sqrt{2} + \sqrt{2})^2$) $(4\sqrt{2} + \sqrt{2})^2$ ($(4\sqrt{2} + \sqrt{2})^2$) $(4\sqrt{2} + \sqrt{2})^2$) $(4\sqrt{2} + \sqrt{2})^2$) $(4\sqrt{2} + \sqrt{2})^2$ ($(4\sqrt{2} + \sqrt{2})^2$) $(4$		B1	
(ii) Correct response, e.g. Π , $\sqrt{\Pi}$, $\sqrt{3}\sqrt{2}$, $\sqrt{5}\sqrt{7}$, (d) $(\sqrt{(2\times16)} + \sqrt{2})^2$ (= $(5\sqrt{2})^2$) $(4\sqrt{2} + \sqrt{2})^2$ (= $(5\sqrt{2})^2$) (50) M1 OR M1 $32 + \sqrt{3}2\sqrt{2} + \sqrt{3}2\sqrt{2} + 2$ any 3 terms correct A1 $32 + 8 + 8 + 2$ CAO A1 50 M1 OR M1 $32 + \sqrt{3}2\sqrt{2} + \sqrt{3}2\sqrt{2} + 2$ any 3 terms correct A1 $32 + 8 + 8 + 2$ CAO A1 50 M1 OR M1 $32 + \sqrt{3}2\sqrt{2} + \sqrt{3}2\sqrt{2} + 2$ any 3 terms correct A1 $32 + 8 + 8 + 2$ CAO A1 50 M1 (Note for markers: $6 + 4 + 8 + 12 + 10 + 3$) CAO FT 'their 43' (b) $6 + 4 + 8 + 12 + \frac{1}{2} \times 10$ OR $43 - 3 - \frac{1}{2} \times 10$ A1	(c)(i) Correct response, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{1/2}$, $\sqrt{5}$, $\sqrt{21}$,		
(d) $(\sqrt{(2\times16)} + \sqrt{2})^2$ (= $(5\sqrt{2})^2$) A1 correct A1 $32 + 8 + 8 + 2$ CAO A1 50 17(a) Strategy, finding area 0.2×30 + 0.4×10 + 0.8×10 + 1.2×10+ 1.0×10+ 0.1×30 A1 (Note for markers: 6+4+8+12+10+3) CAO A1 (b) 6+4+8+12+ $\sqrt{2}$ ×10 OR 43 - 3 - $\sqrt{2}$ ×10 A1 (People) A1 (Note for markers: 43')		B1	
		M1	· · · · · · · · · · · · · · · · · · ·
50 CAO A1 50 17(a) Strategy, finding area 0.2×30 + 0.4×10 + 0.8×10 + 1.2×10+ 1.0×10+ 0.1×30 43 (people) (b) 6+4+8+12+½×10 OR 43-3-½×10 A1 CAO FT 'their 43'			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	9	CAU AI 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17(a) Strategy finding area	M 1	Any single area is sufficient
0.1×30 43 (people) (b) 6+4+8+ 12 + ½×10 OR 43 – 3 – ½×10 A1 CAO FT 'their 43' A1			
43 (people) (b) 6+4+8+ 12 + ½×10 OR 43 – 3 – ½×10 M1 A1 FT 'their 43'			'
(b) $6+4+8+12+\frac{1}{2}\times10$ OR $43-3-\frac{1}{2}\times10$ A1			
VL 1 /	35 (people)	5	

PAPER 1	Marks	FINAL MARK SCHEME
Higher Tier		Comments
18(a) P(not purple, not purple) with sight of 6/8	B1	Not for sight of 6/8 alone, i.e. as 6 non purple shoes out of 8
OR sight of an alternative full strategy		shoes
		Allow B1 for sight of $6/8 \times 5/8$
$6/8 \times 5/7$ or alternative full calculation shown	M1	
30/56 ISW (15/28)	A1	
(b) $P(RR)+P(PP)+P(BB)+P(WW)$	B1	OR 1 – P(2 different colours)
		OR P(any shoe) × P(its matching shoe)
Sight of $2/8 \times 1/7$ in appropriate working	B1	OR $8/8 \times 1/7$
$4 \times (2/8 \times 1/7)$ or equivalent	M1	OR $8/8 \times 1/7$
1/7	A1	OR equivalent fraction
	7	

PAPER 2 – FOUNDAITON

PAPER 2 (Calculator allowed)	Marks	FINAL MARK SCHEME
Foundation Tier 1. (a) (59.96)		Comments
32.7(0) (socks)	B1	
55.38 (shirts)	B1	
65.36 (shoes)	B1	
(£) 213.4(0)	B1	F.T. their figures for 1 error
(b) 10% = 21.34 5% = 10.67 OR (0).05 × 213.4(0) Discount = (£) 10.67	M1 A1	If cost of shirts is £110.76 then total would be (£)268.78 and discount is (£)13.439 OR (£)13.44 OR (£)13.43 For any correct method for finding 5% F.T. their total. Allow M1,A1 for (£)202.73
		OR <u>(£)255.34</u> <u>Also FT 95% of their total.</u>
	6	1% = 2.13 then 5% = 10.65 M1 A1 PA-1
2. Distance 160mm 160cm 160m (160km)	B1	
Weight (35kg) 350kg 35mg 35g	B1	
Capacity 35 litres 350litres (350 ml) 35 mm ³	B1	
Height 1900cm (190cm) 19cm 190mm	B1 4	
3. (a) Evidence of square counting	M1	
59 – 65	A1	Condone square notation, e.g. 60^2 , but $60^2 = 3600$ gets A0
3. (b)	B1	Circles: for the 1 correct line and no other
	B1	Star: for all 5 correct lines
(4.6)	4	
4. (a) C A B	B1	A should be at ½. Condone use of W(hite)
	B1	B should be between 34 and 1 exclusive. (3/4 is to the right
0 1		of the 'e' in 'red'. Welsh scripts: To the right of the final
	B1	'o' in 'stopio') Condone use of Y(ellow) C should be at 0. Condone use of R(ed)
4217.1	5.1	Letters must be seen on scale (i.e. not 0.5, 0.875 and 0)
(b) likely	B1 4	<u>C.A.O.</u>
5. (a) (i) cylinder	B1	Accept 'circular based cylinder', 'cylindrical prism',
(ii) cuboid	B1	'cylinder prism', but not 'circular prism' Accept 'rectangular cuboid', but not 'rectangular prism'
(b) tangent	B1	
(c) Perpendicular through C	B1	Tolerance: Between a line to the right of 'B' in AB and a line
		to left of the 'p' in passes (inclusive) On Welsh script between a line to the right of 'l' in
		perpendicular and a line to left of the 's' in sy'n (inclusive)
	4	

PAPER 2 (Calculator allowed)	Marks	FINAL MARK SCHEME
Foundation Tier		Comments
6. (a) (£)3.16	B1	
(b) (£)9.2(0)	B1	
6. (c) 5	B1	
$(\pounds)1.28 \times 5 (6.40) + (\pounds)27.46$	M2	M1 for $27.46 + \dots$ OR $1.28 \times 5 + \dots$
= (£)33.86	A1	F.T. $(£)32.58$ from $(£)1.28 \times 4 (5.12) + (£)27.46$
(Change =) (£)6.14	A1	FT provided M1 awarded
		Penalise –1 for consistent use of incorrect column.
		UK and Europe: $(£)13.82 + 5 \times 60(p) (16.82) (£)23.18$ World Tone 1 + $(£)26.28 + 5 \times 1.22 (32.38) ((£)7.62$
QWC		World Zone 1: $(£)26.28 + 5 \times 1.22 (32.38)$ $((£)7.62$
Look for	QWC	QWC2 Presents relevant material in a coherent and logical
Spelling	2	manner, using acceptable mathematical form, and with few
Clarity of text explanations		if any errors in spelling, punctuation and grammar.
• The use of notation – watch for '=','£', 'p' being		QWC1 Presents relevant material in a coherent and logical
used appropriately.		manner but with some errors in use of mathematical form, spelling, punctuation or grammar.
QWC2: Candidates will be expected to		OR
 present work clearly, with words explaining their processes or steps 		Evident weaknesses in organisation of material but using
AND		acceptable mathematical form, with few if any errors in
make few if any mistakes in mathematical form,		spelling, punctuation and grammar.
spelling, punctuation and grammar and include		QWC0 Evident weaknesses in organisation of material, and
units in their final answer		errors in use of mathematical form, spelling
QWC1: Candidates will be expected to		
 present work clearly, with words explaining their processes or steps 		
OR		
make few if any mistakes in mathematical form, spelling,		
punctuation and grammar and include units in their final	9	
answer		
7. (a) 101	B1	
(b) 2×60 + 1 OR <u>60+61</u>	M1	
= 121	A1	
	3.54	
$\begin{array}{l} \text{(c) } (81-1)/2 \\ = 40 \end{array}$	M1 A1	C.A.O. 40+41; 40,41; 40 unshaded get M1, A0.
_ 40	5	C.A.O. 40+41; 40,41; 40 unsnaded get W11, AU.
8. (a) (i) Add 12 to the previous term	B1	Accept +12, goes up in 12s, but 12n-8 is B0
-		
(ii) Multiply the previous term by –3	B1	Accept ×–3.
(b) $F = 6(12) + 10(3)$ OR $72 + 30$	M1	Multiply by 3 and alternate (or change) sign gets B1. For correct substitution and correct interpretation
= 102	A1	C.A.O.
(c) (i) 8m	B1	Accept 8×m, m×8, m8
(ii) (£) 8m/100 OR (£)(0).08m	B1	F.T. 'their (c)(i) if algebraic
		Penalise –1 once for use of different letter but allow M
	_	Use of the letter p gets B0 every time.
	6	*
9. (a) Sum of the numbers (476)	M1	For attempt to add the numbers
Sum/8	M1	For dividing a number in the range 400 – 550 by 8.
59·5 <u>(0)</u> I.S.W.	A1	C.A.O.
(b) 27	B1	-27 gets B0.
(3) 2.		
(c) 45 45 55 <u>59 65</u> 66 69 72	M1	For identifying the correct TWO middle numbers OR for
W. II		arranging the 8 numbers in ascending or descending order.
Median = 62	A1	C.A.O.
	6	Unsupported 62 gets M1, A1.

	PAPER 2 (Calculator allowed) Foundation Tier		FINAL MARK SCHEME Comments	
10. (a) 114 (miles)		B1	Com	
(b) 64 (miles)		B1	F.T. 'their 114' – 50	
(c) 42 (minutes)		B1		
(d) Line drawn from end of stop	pping to (13:39, 0)	B1 4	Three 2mm squares beyond 13:30 on the time axis. (Accuracy of ½ small square)	
11. (a) $\frac{95}{} \times 100$		M1		
38 (%)		A1		
			For the (£)128 F.T. except for (£)163.60/(£)1 Unsupported 10 gets all 4 mar F.T. number of extra days + 2 Answers like '2 days and a fu	ks.
		6	Subtracting two lots of £35.6 But can then get M1,A1 on canswer is not a whole number is only awarded if their num the next whole number. Watch out for 163.60/16 = 16	er. In such cases the final B1 ber of days is rounded up to
12. Either	OR		Subtracting at each stage :	Decimals or % equivalents
He spends (£)100 on rent	$\frac{1}{4} + \frac{2}{5}$	M1	Spends (£)100 on rent	.25 + .4(0) = .65.
and (£)160 on food leaving (£)140	= 13/20	A1	Leaving £300. $2/5$ of £300 = 120 leaving (£)180	165 = .35 First M1, A1 possible
F.T. for second M1,A1 Frac. remaining 140/400 7/20 I.S.W.	F.T. for second M1,A1 Frac. remaining = 1-13/20 =7/20 I.S.W.	M1 A1	F.T. for second M1,A1 Frac. remaining 180/400 = 9/20 Possible 4 marks then -1 if any A marks awarded	F.T. for second M1,A1 but must be fractions for second M1,A1. 35/100 M1 = 7/20 A1
		4	any A marks awarucu	<u> </u>
13. (a) $P\hat{Q}R = 48^{\circ}$		B1	If triangle is 'flipped' then m	ark as if correct then –1
$P\hat{R}Q = 67^{\circ}$.		B1		
Completed triangle		В1	Provided at least B1 awarded	
(b) First arc(s) Final arcs and line		B1 B1	If no arcs then B0, B0	
(c) First arc(s) Final arc(s) and line		B1 B1	Arc must be big enough so the B2 for correct construction a B1 maximum for a correct coline.	
1/ Accept angles shown on the	hair diagram	7		
14. Accept angles shown on their diagram $B\hat{C}E = 60^{\circ} \text{ OR } H\hat{C}G = 60^{\circ}$		B1	For at least one correct 60° (A	nywhere in either triengle)
		B1	For at least one correct 90° (A	
$E\hat{C}G = 90^{\circ} \text{ OR } D\hat{C}B = 90^{\circ} \text{ Accept the 'box' notation}$		M1		ny where in citier square)
$D\hat{C}H = 360^{\circ} - 60^{\circ} - 60^{\circ} - 90^{\circ} - 90^{\circ}$		A1	Angles at a point make 360	,
	= 60° DC = CH (OR marked as equal on the diagram with		$D\hat{C}H = \underline{60} \text{ on its own gets no}$	
$D\hat{C} = CH \text{ (OR marked as equal)}$ $D\hat{C}H = 60^{\circ}\text{)}$	i on the magram with	E1	Needs to show having the 60	\sim and DC = CH.
DCH = 00 1		5		

PAPER 2 (Calculator allowed)	Marks	FINAL MARK SCHEME
Foundation Tier 15.(Agatha) 220, 440, 660, (880, 1100, 1320,) (p)	M1	Comments In £ or p or mixed. M1 for the any 3 correct multiples
(Ben) 140, 280, 420, (560, 700, 840, 980,) (p)	M1	In £ or p or mixed. M1 for the any 3 correct multiples
$4 \times 2(.)20 = 8(.)80 \text{ AND } 3 \times 1(.)40 = 4(.)20$ (£ or p)	A1	Identifying the correct number of each
7 (pens)	A1	CAO. Must state total number of pens altogether
<u>OR</u>		Alternative, Trial & improvement:
$\frac{3.60, 7.20, 10.80, (14.40) + 2.20}{4.20}$	<u>M1M1</u>	2 trials, correctly evaluated showing improvement M1
$\left \frac{4+3}{7} \right $	<u>A1</u> <u>A1</u>	2 trials, correctly evaluated between £10 & £16 incl. M1 $4\times2(.)20$ and $3\times1(.)40 = (£)13$ A1
	AI	7(pens) CAO A1
H1	4	Award all 4 marks for an unsupported answer of 7 (pens)
16. (a) 3.8 (cm) or states 'the same'	B1	Mark final answer. Award independently from E mark
Reason, e.g. 'they even out', 'the mean of these is zero',	E1	Accept a correct method as a reason, e.g.
'totals are the same each week', 'taking away 3 and adding 3		$(3.8 \times 7 + 3 - 3) \div 7$ or equivalent
so it stays the same', 'same amount of rainfall in both weeks'		Allow '3.8+3 = 6.8, and 6.8-3 = 3.8', or '4.8×3+2.8×3 + 3.8 = 26.6 with 26.6÷7=3.8
weeks		$4.8 \times 3 + 2.8 \times 3 + 3.8 = 20.0$ with $20.0 \div 7 - 3.8$ i.e. showing by calculation that $+3$ and -3 means no change.
		Allow indication of $+1$ -1 bringing 3.8 or 7×3.8 back to
		original
	B1	
(b)(i) Mid-points 1, 2, 3, 4	M1	FT their mid points, including bounds, provided they fall
$1 \times 5 + 2 \times 11 + 3 \times 13 + 4 \times 1$	1	within the classes. $5 + 22 + 39 + 4 = 70$
Intention their ∑fx / 30	m1 A1	(70/30) Following correct working, however accept unsupported
2.3(33cm)	Ai	2.3(3cm) for all 4 marks. Accept 7/3 or 2½ as a final
		answer
	B1	Accept '2.5 to 3.5' (with/without '13')
(ii) Modal class $2.5 \le r < 3.5$ (13)	B1	Accept '1.5 to 2.5'
(iii) Median $1.5 \le r < 2.5$	0	If neither B1 awarded in (ii) or (iii), then award SC1 for
H4	8	answers of 3 and 2 respectively.
17. (a)(i) 200 × 1.09137 OR 200 ÷ 0.916279	M1	Accept 200×1.09() and same with other calculations
218(.274)	A1 M1	Accept rounded or truncated
(ii) 250× 1.4789 OR 250 ÷ 0.676175 369(.72)	A1	Accept unambiguous truncation Accept rounded or truncated, also accept 370
(b) $1 \div 133.5$ or $1 \div 0.090147$	M1	Sight of either calculation
<u>11.09</u>	A1 A1	Either answer correctly placed in the table also implies M1
<u>0.0074</u>	AI	Accept 0.0075. Only allow 0.01 if correct working seen If answers reversed in the table award M1, A0, A1
		If 2 correct answers seen in working award M1, A1, A0
	7	If 1 correct answer seen in working award M1, A0, A0
H5	7 M1	If only 1 answer given misplaced in table award M1, A0, A0
18. (a) $6 \times \dots = 54$ or $54 \div 6 = \dots$ (Area each face on small cube =) $9(\text{cm}^2)$	M1 A1	
18 (small faces on cuboid)	B1	ISW. Watch for an embedded answer. FT 'their 54÷6' × 'their 18'
$(18 \times 9 =)$ $162(cm^2)$	B1	evaluated correctly from a consistent misconception of the number
		of faces. Alternative: These alternatives
		Single cube has 6 faces B1 are only marked
		Cuboid has 18 faces B1 AS COMPLETE
		Total surface area 3 × 54 M1 SOLUTIONS.
		$ \begin{array}{c cccc} & = 162 \ (cm^2) & AI & \textbf{You must not} \\ \hline \textbf{\textit{OR}} & 6 \ \textit{hidden faces} & BI & \textbf{award credit for} \\ \end{array} $
		Equivalent to 3 cubes at 6 faces each B1 any of the
		Total surface area 3 × 54 M1 individual lines.
		6 hidden faces B1 On its own this
		Area of cuboid 216 – 54 M1 gets B0. It only
(b) (Length side of small cube =) $\sqrt{9}$ (= 3)		= 162 (cm ²) A1 gets B1 as a part of ET 'their 9' provided M1 awarded in (a) a complete
Volume = $(4 \times) 3 \times 3 \times 3$	M1 m1	FT 'their 9' provided M1 awarded in (a) Method to calculate volume of 1 or 4 a complete solution with all
108 (cm ³)	MI A1	cubes. FT 'their 3' provided M1
Н8	7	<u>awarded</u> <u>that alternative</u>

PAPER 2 HIGHER TIER

PAPER 2	Marks	FINAL MARK SCHEME
Higher Tier	3.61	Comments
1.(Agatha) 220, 440, 660, (880, 1100, 1320,) (p)	M1	In £ or p or mixed. M1 for any 3 correct multiples
(Bryn) 140, 280, 420, (560, 700, 840, 980,) (p)	M1	In £ or p or mixed. M1 for any 3 correct multiples
$4 \times 2(.)20 = 8(.)80 \text{ AND } 3 \times 1(.)40 = 4(.)20$ (£ or p)	A1	Identifying the correct number of each
7 (pens)	A1	CAO. Must state total number of pens altogether
		Alternative, Trial & improvement:
		2 trials, correctly evaluated showing improvement
		M1 2 trials, correctly evaluated between £10 & £16 inclusive M1
		$4\times2(.)20$ and $3\times1(.)40 = (£)13$ A1 $7(pens) CAO A1$
	4	Award all 4 marks for an unsupported answer of 7 (pens)
2(a) (12 – 2) ×180	M1	Alternative: Sum of exterior angles 360(°)
÷ 12	m1	Exterior 360/12 (not as a final answer)
150(°)	A1	Interior (180 – exterior) 150(°)
-0.0(/		If final answer 360/12 or 30, then allow M1, m0, A0 OR
		Sum interior((2 ×12-4) rt angles) 20 × 90 (°) (= 1800(°)) M1
		Each interior angle (1800) ÷12
(b) No AND a reason, e.g. '150 not a factor or 360',	E1	ml
$^{\circ}150+150 = 300$ not enough, $^{\circ}3$ lots of 150 is 450 too		150(°) A1
much'	4	No FT from working with exterior angle in (a), FT from
		M1, m1 in (a) only
3(a)(i) -13g + 4h	B2	Must be written as an expression. B1 for either term correct
		Mark final answer
(ii) 15p _. ¹¹	B1	ISW
(iii) $2y^4$	B1	ISW (ii) &(iii) penalise change of variable once only -1
(b) $3 \times x + 4 \times 2x$ or equivalent	B1	
11x	B1	Mark final answer. FT for equivalent level of difficulty,
	6	provided either pencils or pens is correct
4(a) 3.8 (cm) or states 'the same'	B1	Mark final answer. Award independently from E mark
Reason, e.g. 'they even out', 'the mean of these is zero',	E1	Accept a correct method as a reason, e.g.
'totals are the same each week', 'taking away 3 and		$(3.8 \times 7 + 3 - 3) \div 7$ or equivalent
adding 3 so it stays the same', 'same amount of rainfall in both weeks'		Allow '3.8+3 = 6.8, and 6.8-3 = 3.8', or '4.8×3+2.8×3 + 3.8 = 26.6 with 26.6÷7=3.8
both weeks		i.e. showing by calculation that $+3$ and -3 means no change.
		Allow indication of + 1 -1 bringing 3.8 or 7×3.8 back to original
(b)(i) Mid-points 1, 2, 3, 4	B1	
$1 \times 5 + 2 \times 11 + 3 \times 13 + 4 \times 1$	M1	FT their mid points, including bounds, provided they fall
Intention their $\sum fx / 30$	m1	within the classes. $5 + 22 + 39 + 4 = 70$ (70/30)
2.3(33cm)	A1	Following correct working, however accept unsupported
2.3(33611)	***	2.3(3cm) for all 4 marks. Accept 7/3 or $2\frac{1}{3}$ as a final
		answer
(ii) Modal class $2.5 \le r < 3.5$	B1	Accept '2.5 to 3.5'
(iii) Median $1.5 \le r < 2.5$	B1	Accept '1.5 to 2.5'
		If neither B1 awarded in (ii) or (iii), then award SC1 for
	8	answers of 3 and 2 respectively.

PAPER 2	Marks	FINAL MARK SCHEME
Higher Tier		Comments
5(a)(i) 200 × 1.09137 OR 200 ÷ 0.916279	M1	Accept 200×1.09()
218(.274)	A1	Accept rounded or truncated
(ii) 250×1.4789 OR $250 \div 0.676175$	M1	
369(.72)	A1	Accept rounded or truncated, also accept 370
(b) $1 \div 0.090147$ or $1 \div 133.5$	M1	Sight of either calculation
11.09	A1	Either answer correctly placed in the table also implies M1
0.00749	A1	Accept 0.0075. Only allow 0.01 if correct working seen
		If answers reversed in the table award M1, A0, A1
		If 2 correct answers seen in working award M1, A1, A0
		If 1 correct answer seen in working award M1, A0, A0
	7	If only 1 answer given misplaced in table award M1, A0, A0
6(a) $x/3 = 53 - 42$ OR $x/3 = 11$ OR $x + 126 = 159$	M1	
x = 33	A1	Award both marks for an embedded answer
(b) $40 - x = 11 \times 4$	B1	FT until 2 nd error in (b)
-x = 44 - 40 OR $-x = 4$ OR $40 - 44 = x$	B1	
x = -4	B1	Award all marks for an embedded answer.
		Do not accept $-x = 4$ for this final B1
	5	Award B1, B0, B1 for $40-x=44$, leading to $x=44-40$ and $x=4$
7. One correct evaluation,	B1	$x 3x^3 - x$
$1.2 \le x \le 1.3$		1.2 3.984
		1.21 4.104683
2 correct evaluations,		1.22 4.227544
$1.235 \le x \le 1.25$, one either side of 4.5	B1	1.23 4.352601
		1.24 4.479872
2 correct evaluations,		1.241 4.49272156
$1.235 \le x \le 1.245$, one either side of 4.5	M1	1.242 4.50559346
OR correct evaluation of 1.245 if previous B1 awarded		1.243 4.51848772
		1.244 4.53140435
1.24	A1	1.245 4.54434338
No calculations shown: accept "too high", ">", etc.		1.246 4.55730481
		1.247 4.57028867
		1.248 4.58329498
		1.249 4.59632375
		1.25 4.609375
		1.26 4.741128
		1.27 4.875149
		1.28 5.011456
	1	1.29 5.150067
	4	1.3 5.291
		1.235 gives 4.41595

PAPER 2	Marks	FINAL MARK SCHEME
Higher Tier $8(a) 6 \times = 54 \text{ or } 54 \div 6 =$ (Area each face on small cube =) $9(\text{cm}^2)$ $18 \text{ (small faces on cuboid)}$ $(18 \times 9 =)$ $162(\text{cm}^2)$	M1 A1 B1 B1	ISW. Watch for an embedded answer. FT 'their 54÷6' × 'their 18' evaluated correctly from a consistent misconception of the number of faces. Alternative:
Look for • spelling • clarity of text explanations, • the use of notation (watch for the use of '=', cm²) QWC2: Candidates will be expected to • present work clearly, with words explaining process or steps AND • make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to • present work clearly, with words explaining process or steps OR • make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	QWC 2	Single cube has 6 faces Cuboid has 18 faces Total surface area 3 × 54 = 162 (cm²) OR 6 hidden faces Equivalent to 3 cubes at 6 faces each Total surface area 3 × 54 = 162 (cm²) OR Area 4 cubes 4×54 = 216 6 hidden faces Area of cuboid 216 – 54 = 162 (cm²) QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
(b) (Length side of small cube =) $\sqrt{9}$ (= 3) Volume = (4 ×) 3 × 3 × 3 $108 \text{ (cm}^3)$	M1 m1 A1 9	FT 'their 9' provided M1 awarded in (a) Method to calculate volume of 1 or 4 cubes. FT 'their 3' provided M1 awarded
9(a) 1.26 × 120 OR 0.26 × 120 + 120 (£)151.2(0) (b) 43.55/0.65 OR (43.55/65) × 100 67 (m)	M2 A1 M1 A1 5	M1 for 0.26 × 120 (=31.2(0)) Mark final answer ISW (e.g. attempt to change units)
10.Any 2 of the lines x+y=4, y=2x + 4 and y= 1 correct Correct region shaded	B2 B1 3	B1 for any 1 correct line CAO

PAPER 2	Marks	FINAL MARK SCHEME
Higher Tier		Comments
11(a) Intention to subtract reading from horizontal scale	M1	(72-40 or 73-40)
for cumulative values 90 & 30		
32 or 33	A1	
(b) 45 / 120 (×100)	M1	Accept values between 44 to 46 inclusive
37.5(%) rounded or truncated	A1	leading to 36.66 to 38.33(%) rounded or truncated
(c) 75 seconds means $\approx 100 \times 97/120$ (80.833%), OR	M1	$(OR\ 100 \times 96/120 = 80\%).$
90% calls means $(0.9 \times 120 =) 108$ calls (≈ 80 seconds)		75 seconds gives 96 to 98 inclusive so accept 80 % to
AND		81.666%
interpretation 'No' (target not met stated or implied)	A1	
	6	
12. Appropriate sight or use of 42° or 48°	B1	
$\sin 42 = \operatorname{distance}/3.2$ OR $\cos 48 = \operatorname{distance}/3.2$	M1	
Distance = $3.2 \times \sin 42$ OR Distance = $3.2 \times \cos 48$	A1	
2.1(4 km)	A1	Ignore further working to add 3.2 (to give an answer
		5.3(4km))
		(Note: $sin42 = sin138 = 0.669$ hence watch for a correct
		answer from incorrect working, M0, A0, A0, possible B1 for
	4	sight of appropriate 42° or 48°)
13(a) Method to eliminate variable, e.g. equal coefficients	M1	Allow 1 error in one term, not one with equal coefficients
First variable	A1	x = -3 or y = 5
Substitute to find second variable	M1	FT their first variable
Second variable	A1	
(b) $x = \{-3 \pm \sqrt{3^2 - 4 \times 5 \times -7}\} / (2 \times 5)$	M1	Allow one error in sign or substitution, not in the formula
$= \{ -3 \pm \sqrt{149} \} / 10$	A1	CAO
x = 0.92 and $x = -1.52$ (Answer to 2dp)	A1	CAO
•	7	
14. Length scale factor $\times_3 \sqrt{0.5}$ or $\div_3 \sqrt{2}$	B1	
New dimensions $55 \times_3 \sqrt{0.5}$, $40 \times_3 \sqrt{0.5}$, $20 \times_3 \sqrt{0.5}$	M1	FT their scale factor including need for root, must be
or $55 \div_3 \sqrt{2}$, $40 \div_3 \sqrt{2}$, $20 \div_3 \sqrt{2}$		equivalent level of difficulty for M1 only
43.7 or 44, 31.7 or 32, 15.9 or 16	A2	A1 if correct but to >1dp or incorrectly rounded (truncated):
		43.6535, 31.748, 15.874
		Alternative method
		B1 20:40:55 is 1:2:2.75
		M1 So x : 2x : 2.75x giving $x \times 2x \times 2.75x = 5.5x^3$
		M1 $x^3 = 22000 \div 5.5 (=4000)$ or $x = \sqrt{4000} = 15.9$
		A1 15.9, 31.7, 43.7
15() 0.41 11 16	4	
15(a) 0.4 indicated for no apple	B1	In working or on tree
Idea $0.6 \times = 0.18$	M1	Accept evidence such as '18÷6', i.e. with incorrect place
		value
P(buys a bottle of water) = 0.3	A1	In working or on tree
Second branches 0.3 0.7 0.3 0.7	B1	
(b) 0.4×0.7	M1	FT 'their 0.4' and 'their 0.7' provided values >0 and <1
= 0.28	A1	(N 0.4.0.02 0.320.0.4.0.10 0.72)
16() 100 105	6	(Note: 0.4×0.82 = 0.328, 0.4×0.18= 0.72)
16(a) 180 – 125	M1	Or statement that opposite angle cyclic quad 180°
$a = 55^{\circ}$	A1	
$b = 110^{\circ}$	B1	FT 2 × 'their a' correctly evaluated
(b) $c = 85^{\circ}$	B1	
Alternate segment theorem	E1	Depends on B1 awarded. Accept a description
	5	

PAPER 2 Higher Tier	Marks	FINAL MARK SCHEME Comments
17.		Alternative example:
Strategy, information transferred to the diagram with D	S1	Strategy, information transferred to the diagram with D
marked on BC, AND deciding need to find AB using sine		marked on BC, AND deciding need to find BC using sine
rule then need to find AD using cosine rule		rule, then DC=BC-BD, then need to find AD using cosine
		rule
$AB/\sin 60^{\circ} = 10.6/\sin 35^{\circ}$	M1	$BC/\sin 85^{\circ} = 10.6/\sin 35^{\circ}$
$AB = \sin 60^{\circ} \times 10.6/\sin 35^{\circ}$ (Rearranged form implies M1)	A1	$BC = \sin 85^{\circ} \times 10.6/\sin 35^{\circ} (Rearranged form implies M1)$
AB = 16(.0046 cm)	A1	BC = 18.4(102cm) AND DC(BDC - 14.2) = 4.2(102cm)
(FT their AB within cosine rule, not use of 10.6)		(FT their DC within cosine rule, not use of 14.2)
$AD^2 = 14.2^2 + AB^2 - 2 \times 14.2 \times AB \times \cos 35^\circ$	M1	$AD^2 = 10.6^2 + DC^2 - 2 \times 10.6 \times DC \times \cos 60^{\circ}$
$AD^2 = 85.4(576)$	A1	$AD^2 = 85.4(576)$
AD = 9.2(443cm) rounded or truncated from correct	A1	AD = 9.2(443cm) rounded or truncated from correct
working	7	working
18. $\Pi \times 4.6^2 \times 93/360$	M1	
Answers between 17.16 and 17.18 or 17.2 (cm ²)	A1	
Appropriate use of $\frac{1}{2}$ abSinC OR cos46.5 = $\frac{h}{4.6}$ with	M1	Method to find base & height of right angled triangle
$\sin 46.5 = b/4.6$		
$\frac{1}{2} \times 4.6 \times 4.6 \times \sin 93$ OR h = 3.16643 and b = 3.3367	M1	Needs to be height and ½ base or base evaluated
(Triangle area) 10.5655(cm ²)	A1	Do not accept 10.5 (cm ²)
Approximately 6.6 (cm ²)	B1	Depends on at least M1 from attempt to find each area, then
	6	FT their difference in areas

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: www.wjec.co.uk